

Welcome

Welcome to the MenpoDetect documentation!

MenpoDetect is a Python package designed to make object detection, in particular
face detection, simple. MenpoDetect relies on the core package of Menpo, and
thus the output of MenpoDetect is always assumed to be Menpo core types. If you
aren’t sure what Menpo is, please take a look over at
Menpo.org [http://www.menpo.org/].

A short example is often more illustrative than a verbose explanation. Let’s
assume that you want to load a set of images and that we want to detect
all the faces in the images. We could do this using the Viola-Jones detector
provided by OpenCV as follows:

import menpo.io as mio
from menpodetect import load_opencv_frontal_face_detector

opencv_detector = load_opencv_frontal_face_detector()

images = []
for image in mio.import_images('./images_folder'):
 opencv_detector(image)
 images.append(image)

Where we use Menpo to load the images from disk and then detect as many
faces as possible using OpenCV. The detections are automatically attached
to each image in the form of a set of landmarks.

Supported Detectors

MenpoDetect was not designed for performing novel object detection research.
Therefore, it relies on a number of existing packages and merely normalizes
the inputs and outputs so that they are consistent with core Menpo types.
These projects are as follows:

	dlib [http://dlib.net] - Provides the detection capabilities of the
Dlib project. This is a HOG-SVM based detector that will return a very
low number of false positives.

	OpenCV [http://opencv.org] - Provides the detection capabilities of the
OpenCV project. OpenCV implements a Viola-Jones detector
and provides models for both frontal and profile faces as well as eyes.

We would be very happy to see this collection expand, so pull requests
are very welcome!

The MenpoDetect API

This section attempts to provide a simple browsing experience for the
MenpoDetect documentation. In MenpoDetect, we use legible docstrings, and
therefore, all documentation should be easily accessible in any sensible IDE
(or IPython) via tab completion. However, this section should make most of the
core classes available for viewing online.

	menpodetect.detect

	menpodetect.dlib

	menpodetect.opencv

menpodetect.detect

This module contains a base implementation of the generic detection method. It
also provides other helper methods that are useful for all detectors. In general
you will never instantiate one of these directly.

Core

	detect

Convenience

	menpo_image_to_uint8

detect

	
menpodetect.detect.detect(detector_callable, image, greyscale=True, image_diagonal=None, group_prefix='object', channels_at_back=True)[source]

	Apply the general detection framework.

This involves converting the image to greyscale if necessary, rescaling
the image to a given diagonal, performing the detection, and attaching
the scaled landmarks back onto the original image.

uint8 images cannot be converted to greyscale by this framework, so must
already be greyscale or greyscale=False.

	Parameters

	
	detector_callable (callable or function) – A callable object that will perform detection given a single parameter,
a uint8 numpy array with either no channels, or channels as the
last axis.

	image (menpo.image.Image) – A Menpo image to detect. The bounding boxes of the detected objects
will be attached to this image.

	greyscale (bool, optional) – Convert the image to greyscale or not.

	image_diagonal (int, optional) – The total size of the diagonal of the image that should be used for
detection. This is useful for scaling images up and down for detection.

	group_prefix (str, optional) – The prefix string to be appended to each each landmark group that is
stored on the image. Each detection will be stored as group_prefix_#
where # is a count starting from 0.

	channels_at_back (bool, optional) – If True, the image channels are placed onto the last axis (the back)
as is common in many imaging packages. This is contrary to the Menpo
default where channels are the first axis (at the front).

	Returns

	bounding_boxes (list of menpo.shape.PointDirectedGraph) – A list of bounding boxes representing the detections found.

menpo_image_to_uint8

	
menpodetect.detect.menpo_image_to_uint8(image, channels_at_back=True)[source]

	Return the given image as a uint8 array. This is a copy of the image.

	Parameters

	
	image (menpo.image.Image) – The image to convert. If already uint8, only the channels will be
rolled to the last axis.

	channels_at_back (bool, optional) – If True, the image channels are placed onto the last axis (the back)
as is common in many imaging packages. This is contrary to the Menpo
default where channels are the first axis (at the front).

	Returns

	uint8_image (ndarray) – uint8 Numpy array, channels as the back (last) axis if
channels_at_back == True.

menpodetect.dlib

This module contains a wrapper of the detector provided by the Dlib 1 2
project. In particular, it provides access to a frontal face detector that
implements the work from 3. The Dlib detector is also trainable.

Detection

	DlibDetector

	load_dlib_frontal_face_detector

Training

	train_dlib_detector

References

	1

	http://dlib.net/

	2

	King, Davis E. “Dlib-ml: A machine learning toolkit.” The Journal of
Machine Learning Research 10 (2009): 1755-1758.

	3

	King, Davis E. “Max-Margin Object Detection.” arXiv preprint
arXiv:1502.00046 (2015).

DlibDetector

	
class menpodetect.dlib.DlibDetector(model)[source]

	Bases: object

A generic dlib detector.

Wraps a dlib object detector inside the menpodetect framework and provides
a clean interface to expose the dlib arguments.

	
__call__(image, greyscale=False, image_diagonal=None, group_prefix='dlib', n_upscales=0)[source]

	Perform a detection using the cached dlib detector.

The detections will also be attached to the image as landmarks.

	Parameters

	
	image (menpo.image.Image) – A Menpo image to detect. The bounding boxes of the detected objects
will be attached to this image.

	greyscale (bool, optional) – Convert the image to greyscale or not.

	image_diagonal (int, optional) – The total size of the diagonal of the image that should be used for
detection. This is useful for scaling images up and down for
detection.

	group_prefix (str, optional) – The prefix string to be appended to each each landmark group that is
stored on the image. Each detection will be stored as group_prefix_#
where # is a count starting from 0.

	n_upscales (int, optional) – Number of times to upscale the image when performing the detection,
may increase the chances of detecting smaller objects.

	Returns

	bounding_boxes (list of menpo.shape.PointDirectedGraph) – The detected objects.

load_dlib_frontal_face_detector

	
menpodetect.dlib.load_dlib_frontal_face_detector()[source]

	Load the dlib frontal face detector.

	Returns

	detector (DlibDetector) – The frontal face detector.

train_dlib_detector

	
menpodetect.dlib.train_dlib_detector(images, epsilon=0.01, add_left_right_image_flips=False, verbose_stdout=False, C=5, detection_window_size=6400, num_threads=None)[source]

	Train a dlib detector with the given list of images.

This is intended to easily train a list of menpo images that have their
bounding boxes attached as landmarks. Each landmark group on the image
will have a tight bounding box extracted from it and then dlib will
train given these images.

	Parameters

	
	images (list of menpo.image.Image) – The set of images to learn the detector from. Must have landmarks
attached to every image, a bounding box will be extracted for each
landmark group.

	epsilon (float, optional) – The stopping epsilon. Smaller values make the trainer’s solver more
accurate but might take longer to train.

	add_left_right_image_flips (bool, optional) – If True, assume the objects are left/right symmetric and add in
left right flips of the training images. This doubles the size of the
training dataset.

	verbose_stdout (bool, optional) – If True, will allow dlib to output its verbose messages. These
will only be printed to the stdout, so will not appear in an IPython
notebook.

	C (int, optional) – C is the usual SVM C regularization parameter. Larger values of C will
encourage the trainer to fit the data better but might lead to
overfitting.

	detection_window_size (int, optional) – The number of pixels inside the sliding window used. The default
parameter of 6400 = 80 * 80 window size.

	num_threads (int > 0 or None) – How many threads to use for training. If None, will query
multiprocessing for the number of cores.

	Returns

	detector (dlib.simple_object_detector) – The trained detector. To save this detector, call save on the returned
object and pass a string path.

Examples

Training a simple object detector from a list of menpo images and save it
for later use:

>>> images = list(mio.import_images('./images/path'))
>>> in_memory_detector = train_dlib_detector(images, verbose_stdout=True)
>>> in_memory_detector.save('in_memory_detector.svm')

menpodetect.opencv

This module contains a wrapper of the detector provided by the OpenCV 1
project. At the moment, we assume the use of OpenCV v2.x and therefore
this detector will not be available for Python 3.x. We provide a number
of pre-trained models that have been provided by the OpenCV community, all
of which are implementations of the Viola-Jones method 2.

Detection

	OpenCVDetector

	load_opencv_frontal_face_detector

	load_opencv_profile_face_detector

	load_opencv_eye_detector

References

	1

	http://opencv.org/

	2

	Viola, Paul, and Michael Jones. “Rapid object detection using a boosted
cascade of simple features.” Computer Vision and Pattern Recognition,
2001. CVPR 2001.

OpenCVDetector

	
class menpodetect.opencv.OpenCVDetector(model)[source]

	Bases: object

A generic opencv detector.

Wraps an opencv object detector inside the menpodetect framework and
provides a clean interface to expose the opencv arguments.

	
__call__(image, image_diagonal=None, group_prefix='opencv', scale_factor=1.1, min_neighbours=5, min_size=(30, 30), flags=None)[source]

	Perform a detection using the cached opencv detector.

The detections will also be attached to the image as landmarks.

	Parameters

	
	image (menpo.image.Image) – A Menpo image to detect. The bounding boxes of the detected objects
will be attached to this image.

	image_diagonal (int, optional) – The total size of the diagonal of the image that should be used for
detection. This is useful for scaling images up and down for
detection.

	group_prefix (str, optional) – The prefix string to be appended to each each landmark group that is
stored on the image. Each detection will be stored as group_prefix_#
where # is a count starting from 0.

	scale_factor (float, optional) – The amount to increase the sliding windows by over the second
pass.

	min_neighbours (int, optional) – The minimum number of neighbours (close detections) before
Non-Maximum suppression to be considered a detection. Use 0
to return all detections.

	min_size (tuple of 2 ints) – The minimum object size in pixels that the detector will consider.

	flags (int, optional) – The flags to be passed through to the detector.

	Returns

	bounding_boxes (list of menpo.shape.PointDirectedGraph) – The detected objects.

load_opencv_frontal_face_detector

	
menpodetect.opencv.load_opencv_frontal_face_detector()[source]

	Load the opencv frontal face detector: haarcascade_frontalface_alt.xml

	Returns

	detector (OpenCVDetector) – The frontal face detector.

load_opencv_profile_face_detector

	
menpodetect.opencv.load_opencv_profile_face_detector()[source]

	Load the opencv profile face detector: haarcascade_profileface.xml

	Returns

	detector (OpenCVDetector) – The profile face detector.

load_opencv_eye_detector

	
menpodetect.opencv.load_opencv_eye_detector()[source]

	Load the opencv eye detector: haarcascade_eye.xml

	Returns

	detector (OpenCVDetector) – The eye detector.

Index

 _
 | D
 | L
 | M
 | O
 | T

_

 	
 	__call__() (menpodetect.dlib.DlibDetector method)

 	(menpodetect.opencv.OpenCVDetector method)

D

 	
 	detect() (in module menpodetect.detect)

 	
 	DlibDetector (class in menpodetect.dlib)

L

 	
 	load_dlib_frontal_face_detector() (in module menpodetect.dlib)

 	load_opencv_eye_detector() (in module menpodetect.opencv)

 	
 	load_opencv_frontal_face_detector() (in module menpodetect.opencv)

 	load_opencv_profile_face_detector() (in module menpodetect.opencv)

M

 	
 	menpo_image_to_uint8() (in module menpodetect.detect)

O

 	
 	OpenCVDetector (class in menpodetect.opencv)

T

 	
 	train_dlib_detector() (in module menpodetect.dlib)

 All modules for which code is available

	menpodetect.detect

	menpodetect.dlib.detect

	menpodetect.dlib.train

	menpodetect.opencv.detect

 Source code for menpodetect.detect

from __future__ import division
import numpy as np
from menpo.transform import UniformScale

def _greyscale(image):
 r"""
 Convert image to greyscale if needed. If the image has more than 3 channels,
 then the average greyscale is taken. A copy of the image as greyscale is
 returned (single channel).

 Parameters

 image : `menpo.image.Image`
 The image to convert.

 Returns

 image : `menpo.image.Image`
 A greyscale version of the image.
 """
 if image.n_channels != 1:
 if image.n_channels == 3:
 # Use luminosity for RGB images
 image = image.as_greyscale(mode="luminosity")
 else:
 # Fall back to the average of the channels for other kinds
 # of images
 image = image.as_greyscale(mode="average")
 return image

[docs]def menpo_image_to_uint8(image, channels_at_back=True):
 r"""
 Return the given image as a uint8 array. This is a copy of the image.

 Parameters

 image : `menpo.image.Image`
 The image to convert. If already uint8, only the channels will be
 rolled to the last axis.
 channels_at_back : `bool`, optional
 If ``True``, the image channels are placed onto the last axis (the back)
 as is common in many imaging packages. This is contrary to the Menpo
 default where channels are the first axis (at the front).

 Returns

 uint8_image : `ndarray`
 `uint8` Numpy array, channels as the back (last) axis if
 ``channels_at_back == True``.
 """
 if channels_at_back:
 uint8_im = image.pixels_with_channels_at_back(out_dtype=np.uint8)
 # Handle the dead axis on greyscale images
 if uint8_im.ndim == 3 and uint8_im.shape[-1] == 1:
 uint8_im = uint8_im[..., 0]
 else:
 from menpo.image.base import denormalize_pixels_range

 uint8_im = denormalize_pixels_range(image.pixels, np.uint8)
 # Handle the dead axis on greyscale images
 if uint8_im.ndim == 3 and uint8_im.shape[0] == 1:
 uint8_im = uint8_im[0]
 return uint8_im

[docs]def detect(
 detector_callable,
 image,
 greyscale=True,
 image_diagonal=None,
 group_prefix="object",
 channels_at_back=True,
):
 r"""
 Apply the general detection framework.

 This involves converting the image to greyscale if necessary, rescaling
 the image to a given diagonal, performing the detection, and attaching
 the scaled landmarks back onto the original image.

 uint8 images cannot be converted to greyscale by this framework, so must
 already be greyscale or ``greyscale=False``.

 Parameters

 detector_callable : `callable` or `function`
 A callable object that will perform detection given a single parameter,
 a `uint8` numpy array with either no channels, or channels as the
 last axis.
 image : `menpo.image.Image`
 A Menpo image to detect. The bounding boxes of the detected objects
 will be attached to this image.
 greyscale : `bool`, optional
 Convert the image to greyscale or not.
 image_diagonal : `int`, optional
 The total size of the diagonal of the image that should be used for
 detection. This is useful for scaling images up and down for detection.
 group_prefix : `str`, optional
 The prefix string to be appended to each each landmark group that is
 stored on the image. Each detection will be stored as group_prefix_#
 where # is a count starting from 0.
 channels_at_back : `bool`, optional
 If ``True``, the image channels are placed onto the last axis (the back)
 as is common in many imaging packages. This is contrary to the Menpo
 default where channels are the first axis (at the front).

 Returns

 bounding_boxes : `list` of `menpo.shape.PointDirectedGraph`
 A list of bounding boxes representing the detections found.
 """
 d_image = image

 if greyscale:
 d_image = _greyscale(d_image)

 if image_diagonal is not None:
 scale_factor = image_diagonal / image.diagonal()
 d_image = d_image.rescale(scale_factor)

 pcs = detector_callable(
 menpo_image_to_uint8(d_image, channels_at_back=channels_at_back)
)

 if image_diagonal is not None:
 s = UniformScale(1 / scale_factor, n_dims=2)
 pcs = [s.apply(pc) for pc in pcs]

 padding_magnitude = len(str(len(pcs)))
 for i, pc in enumerate(pcs):
 key = "{prefix}_{num:0{mag}d}".format(
 mag=padding_magnitude, prefix=group_prefix, num=i
)
 image.landmarks[key] = pc
 return pcs

 Source code for menpodetect.dlib.detect

from __future__ import division
from functools import partial
from pathlib import Path

from menpo.base import MenpoMissingDependencyError

try:
 import dlib
except ImportError:
 raise MenpoMissingDependencyError("dlib")

from menpodetect.detect import detect
from .conversion import rect_to_pointgraph

class _dlib_detect(object):
 r"""
 A utility callable that allows the caching of a dlib detector.

 This callable is important for presenting the correct parameters to the
 user. It also marshalls the return type of the detector back to
 `menpo.shape.PointDirectedGraph`.

 Parameters

 model : `Path` or `str` or `dlib.simple_object_detector`
 Either a path to a `dlib.simple_object_detector` or a
 `dlib.fhog_object_detector` or the detector itself.

 Raises

 ValueError
 If a path was provided and it does not exist.
 """

 def __init__(self, model):
 if isinstance(model, str) or isinstance(model, Path):
 m_path = Path(model)
 if not Path(m_path).exists():
 raise ValueError("Model {} does not exist.".format(m_path))
 # There are two different kinds of object detector, the
 # simple_object_detector and the fhog_object_detector, but we
 # can't tell which is which from the file name. Therefore, try one
 # and then the other. Unfortunately, it throws a runtime error,
 # which we have to catch.
 try:
 model = dlib.simple_object_detector(str(m_path))
 except RuntimeError:
 model = dlib.fhog_object_detector(str(m_path))
 self._dlib_model = model

 def __call__(self, uint8_image, n_upscales=0):
 r"""
 Perform a detection using the cached dlib detector.

 Parameters

 uint8_image : `ndarray`
 An RGB (3 Channels) or Greyscale (1 Channel) numpy array of uint8
 n_upscales : `int`, optional
 Number of times to upscale the image when performing the detection,
 may increase the chances of detecting smaller objects.

 Returns

 bounding_boxes : `list` of `menpo.shape.PointDirectedGraph`
 The detected objects.
 """
 # Dlib doesn't handle the dead last axis
 if uint8_image.shape[-1] == 1:
 uint8_image = uint8_image[..., 0]
 rects = self._dlib_model(uint8_image, n_upscales)
 return [rect_to_pointgraph(r) for r in rects]

[docs]class DlibDetector(object):
 r"""
 A generic dlib detector.

 Wraps a dlib object detector inside the menpodetect framework and provides
 a clean interface to expose the dlib arguments.
 """

 def __init__(self, model):
 self._detector = _dlib_detect(model)

[docs] def __call__(
 self,
 image,
 greyscale=False,
 image_diagonal=None,
 group_prefix="dlib",
 n_upscales=0,
):
 r"""
 Perform a detection using the cached dlib detector.

 The detections will also be attached to the image as landmarks.

 Parameters

 image : `menpo.image.Image`
 A Menpo image to detect. The bounding boxes of the detected objects
 will be attached to this image.
 greyscale : `bool`, optional
 Convert the image to greyscale or not.
 image_diagonal : `int`, optional
 The total size of the diagonal of the image that should be used for
 detection. This is useful for scaling images up and down for
 detection.
 group_prefix : `str`, optional
 The prefix string to be appended to each each landmark group that is
 stored on the image. Each detection will be stored as group_prefix_#
 where # is a count starting from 0.
 n_upscales : `int`, optional
 Number of times to upscale the image when performing the detection,
 may increase the chances of detecting smaller objects.

 Returns

 bounding_boxes : `list` of `menpo.shape.PointDirectedGraph`
 The detected objects.
 """
 detect_partial = partial(self._detector, n_upscales=n_upscales)
 return detect(
 detect_partial,
 image,
 greyscale=greyscale,
 image_diagonal=image_diagonal,
 group_prefix=group_prefix,
)

[docs]def load_dlib_frontal_face_detector():
 r"""
 Load the dlib frontal face detector.

 Returns

 detector : `DlibDetector`
 The frontal face detector.
 """
 return DlibDetector(dlib.get_frontal_face_detector())

 Source code for menpodetect.dlib.train

from menpo.base import MenpoMissingDependencyError

try:
 import dlib
except ImportError:
 raise MenpoMissingDependencyError("dlib")

from menpodetect.detect import menpo_image_to_uint8
from .conversion import pointgraph_to_rect

[docs]def train_dlib_detector(
 images,
 epsilon=0.01,
 add_left_right_image_flips=False,
 verbose_stdout=False,
 C=5,
 detection_window_size=6400,
 num_threads=None,
):
 r"""
 Train a dlib detector with the given list of images.

 This is intended to easily train a list of menpo images that have their
 bounding boxes attached as landmarks. Each landmark group on the image
 will have a tight bounding box extracted from it and then dlib will
 train given these images.

 Parameters

 images : `list` of `menpo.image.Image`
 The set of images to learn the detector from. Must have landmarks
 attached to **every** image, a bounding box will be extracted for each
 landmark group.
 epsilon : `float`, optional
 The stopping epsilon. Smaller values make the trainer's solver more
 accurate but might take longer to train.
 add_left_right_image_flips : `bool`, optional
 If ``True``, assume the objects are left/right symmetric and add in
 left right flips of the training images. This doubles the size of the
 training dataset.
 verbose_stdout : `bool`, optional
 If ``True``, will allow dlib to output its verbose messages. These
 will only be printed to the stdout, so will **not** appear in an IPython
 notebook.
 C : `int`, optional
 C is the usual SVM C regularization parameter. Larger values of C will
 encourage the trainer to fit the data better but might lead to
 overfitting.
 detection_window_size : `int`, optional
 The number of pixels inside the sliding window used. The default
 parameter of ``6400 = 80 * 80`` window size.
 num_threads : `int` > 0 or ``None``
 How many threads to use for training. If ``None``, will query
 multiprocessing for the number of cores.

 Returns

 detector : `dlib.simple_object_detector`
 The trained detector. To save this detector, call save on the returned
 object and pass a string path.

 Examples

 Training a simple object detector from a list of menpo images and save it
 for later use:

 >>> images = list(mio.import_images('./images/path'))
 >>> in_memory_detector = train_dlib_detector(images, verbose_stdout=True)
 >>> in_memory_detector.save('in_memory_detector.svm')
 """
 rectangles = [
 [pointgraph_to_rect(lgroup.bounding_box()) for lgroup in im.landmarks.values()]
 for im in images
]
 image_pixels = [menpo_image_to_uint8(im) for im in images]

 if num_threads is None:
 import multiprocessing

 num_threads = multiprocessing.cpu_count()

 options = dlib.simple_object_detector_training_options()
 options.epsilon = epsilon
 options.add_left_right_image_flips = add_left_right_image_flips
 options.be_verbose = verbose_stdout
 options.C = C
 options.detection_window_size = detection_window_size
 options.num_threads = num_threads

 return dlib.train_simple_object_detector(image_pixels, rectangles, options)

 Source code for menpodetect.opencv.detect

from __future__ import division
from functools import partial
from pathlib import Path

from menpo.base import MenpoMissingDependencyError

try:
 import cv2
except ImportError:
 raise MenpoMissingDependencyError("opencv")

from menpodetect.detect import detect
from .conversion import (
 pointgraph_from_rect,
 opencv_frontal_face_path,
 opencv_profile_face_path,
 opencv_eye_path,
)

def _get_default_flags():
 version = cv2.__version__.split(".")[0]
 if version == "2":
 return cv2.cv.CV_HAAR_SCALE_IMAGE
 elif version == "3" or version == "4":
 return cv2.CASCADE_SCALE_IMAGE
 else:
 raise ValueError("Unsupported OpenCV version: {}".format(version))

class _opencv_detect(object):
 r"""
 A utility callable that allows the caching of an opencv detector.

 This callable is important for presenting the correct parameters to the
 user. It also marshalls the return type of the detector back to
 menpo.shape.PointDirectedGraph.

 Parameters

 model : `Path` or `str` or `opencv.CascadeClassifier`
 Either a path to an `opencv.CascadeClassifier` or the detector itself.

 Raises

 ValueError
 If a path was provided and it does not exist.
 """

 def __init__(self, model):
 if isinstance(model, (str, Path)):
 m_path = Path(model)
 if not Path(m_path).exists():
 raise ValueError("Model {} does not exist.".format(m_path))
 model = cv2.CascadeClassifier(str(m_path))
 self._opencv_model = model

 def __call__(
 self,
 uint8_image,
 scale_factor=1.1,
 min_neighbours=5,
 min_size=(30, 30),
 flags=None,
):
 r"""
 Perform a detection using the cached opencv detector.

 Parameters

 uint8_image : `ndarray`
 A Greyscale (1 Channel) numpy array of uint8
 scale_factor : `float`, optional
 The amount to increase the sliding windows by over the second
 pass.
 min_neighbours : `int`, optional
 The minimum number of neighbours (close detections) before
 Non-Maximum suppression to be considered a detection. Use 0
 to return all detections.
 min_size : `tuple` of 2 ints
 The minimum object size in pixels that the detector will consider.
 flags : `int`
 The flags to be passed through to the detector.

 Returns

 bounding_boxes : `list` of `menpo.shape.PointDirectedGraph`
 The detected objects.
 """
 if flags is None:
 flags = _get_default_flags()
 rects = self._opencv_model.detectMultiScale(
 uint8_image,
 scaleFactor=scale_factor,
 minNeighbors=min_neighbours,
 minSize=min_size,
 flags=flags,
)
 return [pointgraph_from_rect(r) for r in rects]

[docs]class OpenCVDetector(object):
 r"""
 A generic opencv detector.

 Wraps an opencv object detector inside the menpodetect framework and
 provides a clean interface to expose the opencv arguments.
 """

 def __init__(self, model):
 self._detector = _opencv_detect(model)

[docs] def __call__(
 self,
 image,
 image_diagonal=None,
 group_prefix="opencv",
 scale_factor=1.1,
 min_neighbours=5,
 min_size=(30, 30),
 flags=None,
):
 r"""
 Perform a detection using the cached opencv detector.

 The detections will also be attached to the image as landmarks.

 Parameters

 image : `menpo.image.Image`
 A Menpo image to detect. The bounding boxes of the detected objects
 will be attached to this image.
 image_diagonal : `int`, optional
 The total size of the diagonal of the image that should be used for
 detection. This is useful for scaling images up and down for
 detection.
 group_prefix : `str`, optional
 The prefix string to be appended to each each landmark group that is
 stored on the image. Each detection will be stored as group_prefix_#
 where # is a count starting from 0.
 scale_factor : `float`, optional
 The amount to increase the sliding windows by over the second
 pass.
 min_neighbours : `int`, optional
 The minimum number of neighbours (close detections) before
 Non-Maximum suppression to be considered a detection. Use 0
 to return all detections.
 min_size : `tuple` of 2 ints
 The minimum object size in pixels that the detector will consider.
 flags : `int`, optional
 The flags to be passed through to the detector.

 Returns

 bounding_boxes : `list` of `menpo.shape.PointDirectedGraph`
 The detected objects.
 """
 if flags is None:
 flags = _get_default_flags()
 detect_partial = partial(
 self._detector,
 scale_factor=scale_factor,
 min_neighbours=min_neighbours,
 min_size=min_size,
 flags=flags,
)
 return detect(
 detect_partial,
 image,
 greyscale=True,
 image_diagonal=image_diagonal,
 group_prefix=group_prefix,
)

[docs]def load_opencv_frontal_face_detector():
 r"""
 Load the opencv frontal face detector: haarcascade_frontalface_alt.xml

 Returns

 detector : OpenCVDetector
 The frontal face detector.
 """
 return OpenCVDetector(opencv_frontal_face_path)

[docs]def load_opencv_profile_face_detector():
 r"""
 Load the opencv profile face detector: haarcascade_profileface.xml

 Returns

 detector : OpenCVDetector
 The profile face detector.
 """
 return OpenCVDetector(opencv_profile_face_path)

[docs]def load_opencv_eye_detector():
 r"""
 Load the opencv eye detector: haarcascade_eye.xml

 Returns

 detector : OpenCVDetector
 The eye detector.
 """
 return OpenCVDetector(opencv_eye_path)

 _static/minus.png

_static/plus.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome

