
Menpo Documentation
Release 0.6.2

Joan Alabort-i-Medina, Epameinondas Antonakos, James Booth, Patrick Snape, and Stefanos Zafeiriou

Jan 09, 2021





CONTENTS

1 Supported Detectors 3
1.1 The MenpoDetect API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Index 9

i



ii



Menpo Documentation, Release 0.6.2

Welcome to the MenpoDetect documentation!

MenpoDetect is a Python package designed to make object detection, in particular face detection, simple. MenpoDe-
tect relies on the core package of Menpo, and thus the output of MenpoDetect is always assumed to be Menpo core
types. If you aren’t sure what Menpo is, please take a look over at Menpo.org.

A short example is often more illustrative than a verbose explanation. Let’s assume that you want to load a set of
images and that we want to detect all the faces in the images. We could do this using the Viola-Jones detector provided
by OpenCV as follows:

import menpo.io as mio
from menpodetect import load_opencv_frontal_face_detector

opencv_detector = load_opencv_frontal_face_detector()

images = []
for image in mio.import_images('./images_folder'):

opencv_detector(image)
images.append(image)

Where we use Menpo to load the images from disk and then detect as many faces as possible using OpenCV. The
detections are automatically attached to each image in the form of a set of landmarks.

CONTENTS 1

http://www.menpo.org/


Menpo Documentation, Release 0.6.2

2 CONTENTS



CHAPTER

ONE

SUPPORTED DETECTORS

MenpoDetect was not designed for performing novel object detection research. Therefore, it relies on a number of
existing packages and merely normalizes the inputs and outputs so that they are consistent with core Menpo types.
These projects are as follows:

• dlib - Provides the detection capabilities of the Dlib project. This is a HOG-SVM based detector that will return
a very low number of false positives.

• OpenCV - Provides the detection capabilities of the OpenCV project. OpenCV implements a Viola-Jones de-
tector and provides models for both frontal and profile faces as well as eyes.

We would be very happy to see this collection expand, so pull requests are very welcome!

1.1 The MenpoDetect API

This section attempts to provide a simple browsing experience for the MenpoDetect documentation. In MenpoDetect,
we use legible docstrings, and therefore, all documentation should be easily accessible in any sensible IDE (or IPython)
via tab completion. However, this section should make most of the core classes available for viewing online.

1.1.1 menpodetect.detect

This module contains a base implementation of the generic detection method. It also provides other helper methods
that are useful for all detectors. In general you will never instantiate one of these directly.

Core

detect

menpodetect.detect.detect(detector_callable, image, greyscale=True, image_diagonal=None,
group_prefix='object', channels_at_back=True)

Apply the general detection framework.

This involves converting the image to greyscale if necessary, rescaling the image to a given diagonal, performing
the detection, and attaching the scaled landmarks back onto the original image.

uint8 images cannot be converted to greyscale by this framework, so must already be greyscale or
greyscale=False.

Parameters

3

http://dlib.net
http://opencv.org


Menpo Documentation, Release 0.6.2

• detector_callable (callable or function) – A callable object that will perform detec-
tion given a single parameter, a uint8 numpy array with either no channels, or channels as
the last axis.

• image (menpo.image.Image) – A Menpo image to detect. The bounding boxes of the
detected objects will be attached to this image.

• greyscale (bool, optional) – Convert the image to greyscale or not.

• image_diagonal (int, optional) – The total size of the diagonal of the image that should
be used for detection. This is useful for scaling images up and down for detection.

• group_prefix (str, optional) – The prefix string to be appended to each each landmark
group that is stored on the image. Each detection will be stored as group_prefix_# where #
is a count starting from 0.

• channels_at_back (bool, optional) – If True, the image channels are placed onto the
last axis (the back) as is common in many imaging packages. This is contrary to the Menpo
default where channels are the first axis (at the front).

Returns bounding_boxes (list of menpo.shape.PointDirectedGraph) – A list of bounding boxes
representing the detections found.

Convenience

menpo_image_to_uint8

menpodetect.detect.menpo_image_to_uint8(image, channels_at_back=True)
Return the given image as a uint8 array. This is a copy of the image.

Parameters

• image (menpo.image.Image) – The image to convert. If already uint8, only the channels
will be rolled to the last axis.

• channels_at_back (bool, optional) – If True, the image channels are placed onto the
last axis (the back) as is common in many imaging packages. This is contrary to the Menpo
default where channels are the first axis (at the front).

Returns uint8_image (ndarray) – uint8 Numpy array, channels as the back (last) axis if
channels_at_back == True.

1.1.2 menpodetect.dlib

This module contains a wrapper of the detector provided by the Dlib12 project. In particular, it provides access to a
frontal face detector that implements the work from3. The Dlib detector is also trainable.

1 http://dlib.net/
2 King, Davis E. “Dlib-ml: A machine learning toolkit.” The Journal of Machine Learning Research 10 (2009): 1755-1758.
3 King, Davis E. “Max-Margin Object Detection.” arXiv preprint arXiv:1502.00046 (2015).

4 Chapter 1. Supported Detectors

http://dlib.net/


Menpo Documentation, Release 0.6.2

Detection

DlibDetector

class menpodetect.dlib.DlibDetector(model)
Bases: object

A generic dlib detector.

Wraps a dlib object detector inside the menpodetect framework and provides a clean interface to expose the dlib
arguments.

__call__(image, greyscale=False, image_diagonal=None, group_prefix='dlib', n_upscales=0)
Perform a detection using the cached dlib detector.

The detections will also be attached to the image as landmarks.

Parameters

• image (menpo.image.Image) – A Menpo image to detect. The bounding boxes of the
detected objects will be attached to this image.

• greyscale (bool, optional) – Convert the image to greyscale or not.

• image_diagonal (int, optional) – The total size of the diagonal of the image that
should be used for detection. This is useful for scaling images up and down for detec-
tion.

• group_prefix (str, optional) – The prefix string to be appended to each each landmark
group that is stored on the image. Each detection will be stored as group_prefix_# where
# is a count starting from 0.

• n_upscales (int, optional) – Number of times to upscale the image when performing
the detection, may increase the chances of detecting smaller objects.

Returns bounding_boxes (list of menpo.shape.PointDirectedGraph) – The detected objects.

load_dlib_frontal_face_detector

menpodetect.dlib.load_dlib_frontal_face_detector()
Load the dlib frontal face detector.

Returns detector (DlibDetector) – The frontal face detector.

Training

train_dlib_detector

menpodetect.dlib.train_dlib_detector(images, epsilon=0.01,
add_left_right_image_flips=False, ver-
bose_stdout=False, C=5, detec-
tion_window_size=6400, num_threads=None)

Train a dlib detector with the given list of images.

This is intended to easily train a list of menpo images that have their bounding boxes attached as landmarks.
Each landmark group on the image will have a tight bounding box extracted from it and then dlib will train given
these images.

Parameters

1.1. The MenpoDetect API 5



Menpo Documentation, Release 0.6.2

• images (list of menpo.image.Image) – The set of images to learn the detector from. Must
have landmarks attached to every image, a bounding box will be extracted for each landmark
group.

• epsilon (float, optional) – The stopping epsilon. Smaller values make the trainer’s solver
more accurate but might take longer to train.

• add_left_right_image_flips (bool, optional) – If True, assume the objects are
left/right symmetric and add in left right flips of the training images. This doubles the size
of the training dataset.

• verbose_stdout (bool, optional) – If True, will allow dlib to output its verbose mes-
sages. These will only be printed to the stdout, so will not appear in an IPython notebook.

• C (int, optional) – C is the usual SVM C regularization parameter. Larger values of C will
encourage the trainer to fit the data better but might lead to overfitting.

• detection_window_size (int, optional) – The number of pixels inside the sliding
window used. The default parameter of 6400 = 80 * 80 window size.

• num_threads (int > 0 or None) – How many threads to use for training. If None, will
query multiprocessing for the number of cores.

Returns detector (dlib.simple_object_detector) – The trained detector. To save this detector, call
save on the returned object and pass a string path.

Examples

Training a simple object detector from a list of menpo images and save it for later use:

>>> images = list(mio.import_images('./images/path'))
>>> in_memory_detector = train_dlib_detector(images, verbose_stdout=True)
>>> in_memory_detector.save('in_memory_detector.svm')

References

1.1.3 menpodetect.opencv

This module contains a wrapper of the detector provided by the OpenCV1 project. At the moment, we assume the use
of OpenCV v2.x and therefore this detector will not be available for Python 3.x. We provide a number of pre-trained
models that have been provided by the OpenCV community, all of which are implementations of the Viola-Jones
method2.

1 http://opencv.org/
2 Viola, Paul, and Michael Jones. “Rapid object detection using a boosted cascade of simple features.” Computer Vision and Pattern Recognition,

2001. CVPR 2001.

6 Chapter 1. Supported Detectors

http://opencv.org/


Menpo Documentation, Release 0.6.2

Detection

OpenCVDetector

class menpodetect.opencv.OpenCVDetector(model)
Bases: object

A generic opencv detector.

Wraps an opencv object detector inside the menpodetect framework and provides a clean interface to expose the
opencv arguments.

__call__(image, image_diagonal=None, group_prefix='opencv', scale_factor=1.1,
min_neighbours=5, min_size=(30, 30), flags=None)

Perform a detection using the cached opencv detector.

The detections will also be attached to the image as landmarks.

Parameters

• image (menpo.image.Image) – A Menpo image to detect. The bounding boxes of the
detected objects will be attached to this image.

• image_diagonal (int, optional) – The total size of the diagonal of the image that
should be used for detection. This is useful for scaling images up and down for detec-
tion.

• group_prefix (str, optional) – The prefix string to be appended to each each landmark
group that is stored on the image. Each detection will be stored as group_prefix_# where
# is a count starting from 0.

• scale_factor (float, optional) – The amount to increase the sliding windows by over
the second pass.

• min_neighbours (int, optional) – The minimum number of neighbours (close detec-
tions) before Non-Maximum suppression to be considered a detection. Use 0 to return all
detections.

• min_size (tuple of 2 ints) – The minimum object size in pixels that the detector will
consider.

• flags (int, optional) – The flags to be passed through to the detector.

Returns bounding_boxes (list of menpo.shape.PointDirectedGraph) – The detected objects.

load_opencv_frontal_face_detector

menpodetect.opencv.load_opencv_frontal_face_detector()
Load the opencv frontal face detector: haarcascade_frontalface_alt.xml

Returns detector (OpenCVDetector) – The frontal face detector.

1.1. The MenpoDetect API 7



Menpo Documentation, Release 0.6.2

load_opencv_profile_face_detector

menpodetect.opencv.load_opencv_profile_face_detector()
Load the opencv profile face detector: haarcascade_profileface.xml

Returns detector (OpenCVDetector) – The profile face detector.

load_opencv_eye_detector

menpodetect.opencv.load_opencv_eye_detector()
Load the opencv eye detector: haarcascade_eye.xml

Returns detector (OpenCVDetector) – The eye detector.

References

8 Chapter 1. Supported Detectors



INDEX

Symbols
__call__() (menpodetect.dlib.DlibDetector method),

5
__call__() (menpodetect.opencv.OpenCVDetector

method), 7

D
detect() (in module menpodetect.detect), 3
DlibDetector (class in menpodetect.dlib), 5

L
load_dlib_frontal_face_detector() (in

module menpodetect.dlib), 5
load_opencv_eye_detector() (in module men-

podetect.opencv), 8
load_opencv_frontal_face_detector() (in

module menpodetect.opencv), 7
load_opencv_profile_face_detector() (in

module menpodetect.opencv), 8

M
menpo_image_to_uint8() (in module menpode-

tect.detect), 4

O
OpenCVDetector (class in menpodetect.opencv), 7

T
train_dlib_detector() (in module menpode-

tect.dlib), 5

9


	Supported Detectors
	The MenpoDetect API

	Index

